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1 Kernel principal component analysis

1st kernel principal component. From previous lecture we know that, for Kernel PCA, the 1st kernel
principal component f1 2 H admits a representation of the form

f1 =
n

X

i=1

↵(1)
i

k(x
i

, ·),

where ↵(1) = (↵(1)
1 , . . . ,↵(1)

n

)> can be obtain via

↵(1) = argmax
↵2n

↵>K2↵

↵>K↵
.

i-th kernel principal component. Similar to KPC1, the i-the kernel principal component is given by

f
i

= argmax
f?span{f1,··· ,fi�1}

1

(n� 1)kfk2H

n

X

j=1

f(x
j

)2.

It can also be transformed into finding the corresponding parameter ↵(i):

↵(i) = argmax
↵2Rn

↵>K2↵

s.t. ↵>K↵ = 1,↵>
j

K↵ = 0, 8j < i.

Solution to ↵. Analogous to PCA, we can find KPCs through eigenvalue decomposition of K. Assume
K 2 Rn⇥n is non-singular, and let � = K1/2↵ so that ↵ = K�1/2�. Now the problem becomes

�(i) = argmax
�2Rn

�>K�

s.t. �>� = 1,�>
j

� = 0, 8j < i.

This is exactly an eigenvalue problem and the solution is

�(i) = the i-th leading eigenvector of K,

and thus ↵(i) = K�1/2�(i) = �(i)/
p
�
i

, where �
i

is the corresponding eigenvalue of �(i). In fact, assume that
K admits an eigenvalue decomposition K = U⇤U> in which U is an orthogonal matrix, then �(i) is just the
i-th column of U . Hence,

↵(i) = K�1/2�(i) = U⇤�1/2U>�(i) =
u
ip
�
i

=
�(i)

p
�
i

.
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Algorithm 2 Kernel PCA

Center the kernel matrix

K  (I
n

� 11>

n
)K(I

n

� 11>

n
).

Compute the (eigenvector, eigenvalue) pairs (e
p

,�
p

) of K by Power Iteration algorithm.

K  
n

X

p=1

�
p

e
p

e>
p

.

Normalize the eigenvectors to get the parameters ↵(i).

↵(i)  1p
�
i

e
i

.

Output the i-th kernel principal component

f (i)  
n

X

j=1

↵(i)
j

k(x
j

, ·).

The next theorem [2] shows that the eigenvalues of the covariance operator and the ones of the centered
Gram matrix coincide. It also gives the relationship between the eigenfunctions of the covariance operator
and the eigenvectors of the centered Gram matrix.

Theorem 36. Let (X ,⌦,P) be a probability space, H be a separable RKHS with kernel k : X ⇥ X ! R,
X be a X -valued random variable and �(x) := k(x, ·) be the feature map such that E k�(X)k2H < 1 and
E[�(X)] = 0. Let ⌃

X

be the covariance operator and G : L2(P)! L2(P) be the integral operator defined as

(Gf)(t) := E[f(X)h�(X),�(t)iH] =

Z

f(x)h�(x),�(t)iHdP(x), for all f 2 L2(P) and t 2 X .

Then G is a Hilbert-Schmidt, positive self-adjoint operator, and

�(G) = �(⌃
X

).

In particular, G is a trace-class operator, i.e., Tr(G) <1, and Tr(G) =
P

i�1 �i

(G) = E k�(X)k2H.

Proof We organize the proof in several steps.
Step 1. Prove G is Hilbert-Schmidt. According to Cauchy-Schwartz inequality, we have k(x, y) =

h�(x),�(y)iH  k�(x)kH k�(y)kH so that

E
X,Y

[k2(X,Y )] 
h

E k�(X)k2H
i2

:= C <1,

where the last inequality follows from the assumption that E k�(X)k2H <1. It follows that �(x) = k(x, ·) 2
L2(P) for any x 2 X , and thus

(Gf)(t) =

Z

f(x)k(x, t)dP(x) = hf, k(t, ·)i
L2(P) = hf,�(t)iL2(P). (17)
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Let {f
i

}
i2I

be an orthonormal basis of L2(P), then we obtain

kGk2HS =
X

i2I

kGf
i

k2
L2(P) =

X

i2I

E
Y

[(Gf
i

)(Y )2]
(17)
=

X

i2I

E
Y

hf
i

,�(Y )i2
L2(P)

C-S


X

i2I

E
Y

h

kf
i

k2
L2(P) k�(Y )k2

L2(P)

i

=
X

i2I

E
Y

h

kf
i

k2
L2(P) EX

[k2(X,Y )]
i

= C
X

i2I

kf
i

k2
L2(P) <1,

and thus G is Hilbert-Schmidt.
Step 2. Characterize G and ⌃

X

by a continuous linear operator T . Consider a linear map defined as
(Th)(x) = hh,�(x)iH for any h 2 H and x 2 X . Note that, by Cauchy-Schwartz inequality, kThk2

L2(P) =

E{[(Th)(X)]2} = E[hh,�(X)iH2]  khk2H E k�(X)k2H < 1, so Th 2 L2(P) for any h 2 H. That is, T
is a linear operator mapping from H to L2(P ). Moreover, T is continuous as, by the same argument,
kTh1 � Th2k2

L2(P)  kh1 � h2k2H E k�(X)k2H. Hence, T has a continuous adjoint T ⇤. Next, we obtain a
closed-form representation for T ⇤. Let f 2 L2(P), then

E kf(X)�(X)kH
C-S
 [E kf(X)k2H E k�(X)k2H]1/2 <1.

This implies that E[f(X)�(X)] 2 H is well-defined according to Riesz lemma. Furthermore, for all h 2 H,
we have hT ⇤f, hiH = hf, Thi

L2(P) = E[f(X)(Th)(X)] = E[hh, f(X)�(X)iH], and thus T ⇤ = E[f(X)�(X)].
Now we show that ⌃

X

= T ⇤T and G = TT ⇤. By definition, for all h, h0 2 H, hh, T ⇤Th0iH =
hTh, Th0iH

L2(P) = E[hh,�(X)iHhh0,�(X)iH] = E[h(X)h0(X)]. Thus, by the uniqueness of the covariance
operator, we get ⌃

X

= T ⇤T . Similarly,

(TT ⇤f)(x) def. of T
= hT ⇤f,�(x)iH

prop. of T⇤
= E[hf(X)�(X),�(x)iH] =

Z

X
f(y)h�(y),�(x)iHdP(y),

which implies G = TT ⇤ and thus G is positve self-adjoint.
Step 3. Show that nonzero eigenvalues of TT ⇤ and T ⇤T coincide. Let E

µ

(A) := {x : Ax = µx} be
the eigenspace of the operator A associated with the eigenvalue µ. Let � > 0 be a positive eigenvalue of
G = TT ⇤ and f an associated eigenfunction. Then we have (T ⇤T )T ⇤f = T ⇤(TT ⇤)f = �T ⇤f . This shows
that T ⇤E

�

(TT ⇤) ⇢ E
�

(T ⇤T ). Applying T to both sides of this inclusion yields

TT ⇤E
�

(TT ⇤) = E
�

(TT ⇤) ⇢ TE
�

(T ⇤T ).

Similarly, we have TE
�

(T ⇤T ) ⇢ E
�

(TT ⇤) and thus

E
�

(TT ⇤) ⇢ TE
�

(T ⇤T ) ⇢ E
�

(TT ⇤).

This implies E
�

(TT ⇤) = TE
�

(T ⇤T ), and, analogously, E
�

(T ⇤T ) = T ⇤E
�

(TT ⇤). Therefore, dim(E
�

(TT ⇤)) =
dim(E

�

(T ⇤T )), and it follows that � is also an eigenvalue for ⌃
X

with the same multiplicity. That concludes
the proof.
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