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Abstract

It is often of great interest to find meaningful geometric/topological description of
data set in virtue of uncovering information otherwise hidden, particularly when
a set of data in a high-dimensional Euclidean space is assumed to lie on a lower
dimensional manifold. The study of graph Laplacian is therefore of great interest
for its connection with graph theory and spectral analysis, which provides both
topological and geometric interpretations. In this report of summary, we first focus
on the convergence of graph Laplacians, then some interesting applications that
incorporate geometric information with the function space are presented.

1 Theory

1.1 Consistency for Graph Constructions

Convergence of the graph Laplacian to the Laplace-Beltrami Operator ∗ (LBO), which analyzes the
functions defined on the manifold and hence characterizes the local geometry of the manifold, lies
in the heart of topological data analysis. To prove consistency of any graph construction, there is a
general framework (Berry and Sauer 2019):

(1) Show that the (discrete) graph Laplacian is a consistent statistical estimator of a (continuous)
integral operator (either pointwise or spectrally). Commonly this integral operator is defined
as the convolution with some kernel function.

(2) Show that the integral operator in (1) converges to the Laplace-Beltrami operator, which can
be achieved by studying the leading order term for the asymptotic expansion of the integral
operator or be obtained by studying the difference of the integral operator to some known
operators (particularly heat kernel operator) that converge to the LBO.

(3) Show that this estimator has finite variance, which is important in regulating the rate of
convergence.

The analysis of the convergence of kernel weighted graph Laplacians to their continuous counterparts
was initiated in Belkin and Niyogi 2006, and the theory is latter completed in Belkin and Niyogi
2008, which proved (1) and (2) under uniform sampling on compact manifolds. Coifman and Lafon
2006 latter extended (1) and (2) to non-uniform sampling, but still requires compact manifold. The
analysis of variance is completed by later work for the constructions in Belkin and Niyogi 2008 and
Coifman and Lafon 2006. The extension of (1) and (2) is also provided by later work Hein 2005.
However, analysis of (3) in Berry and Harlim 2014 has shown that pointwise errors can be unbounded
on non-compact manifold, and hence additional restrictions need to be imposed to construct desirable
graph Laplacians, especially variable bandwidth kernels were required. The construction in Berry
∗The Laplace-Beltrami operator (LBO) ∆M on a manifold M is a differential operator C2(M) →

L2(M), f → −div(∇f), where∇f is the gradient and div denotes divergence. f :M→ R.
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and Sauer 2019 follows the development in theory by adopting a unweighted graph construction with
variable bandwidth and hence generalize to non-compact manifolds. Moreover, Berry and Sauer 2019
paper provides the first, and unique, consistency result for unweighted graph construction.

In this report, key constructions and results from Belkin, Niyogi, and Sindhwani 2006 and Coifman
and Lafon 2006 are presented as the classical approach to represent manifold with kernel weighted
graph construction. Then, the Berry and Sauer 2019 result is discussed with greater detail as the recent
development on unweighted graph construction that enjoys the convergence to diffusion operators
like the weighted constructions but at the same time has better accessibility for geometric information.

1.2 Convergence of Laplacian Eigenmaps (Belkin, Niyogi, and Sindhwani 2006)

Belkin et al. starts by first defining Graph Laplacian L on a graph:
For data points x1, . . . , xn ∈ M ⊆ RN ,M is a compact manifold that is infinitely differentiable
Riemannian submanifold of RN without boundary. Consider the weighted graph with vertex set V

and Gaussian weight matrix W with Wij = 1
t(4πt)k/2

e−
||xj−xi||

2

4t where k is the intrinsic dimension
of the manifoldM. Let D be the degree matrix. And hence we define the graph Laplacian as :

L ≡ D −W

The intrinsic dimension may be unknown, but can be estimated through a method proposed in Belkin
and Niyogi 2006 using the fact that the Laplacian of the constant function is 0.

The graph Laplacian L can be extended from functions on the graph (V,W ) to an empirical operators
L̂t,n : C(M)→ C(M) that is maps continuous functions defined onM to the same function space.
This L̂t,n is referred to as the point cloud Laplacian
For data points x1, . . . , xn ∈M ⊆ RN :

L̂t,n(f)(p) ≡ 1

t(4πt)k/2

(
1

n

n∑
i=1

e−
||p−xi||

2

4t

[
f(p)− f(xi)

])

Let fv be the restriction of any function f ∈ C(M) restricted to V , then L̂t,nf is the same as Lfv.
Therefore, for small bandwidth t, eigenvalues of L and L̂t,n are the same and the corresponding
eigenfunctions (eigenvectors when restricted to V ) are naturally related.
So far, the defined L and L̂t,n are all discrete operators. The (continuous) integral operator, which
serves as a functional approximation to the LBO ∆M, in step (1) of the proof framework is defined
as Lt,n : L2(M)→ L2(M)

Lt,n(f)(p) ≡ 1

t(4πt)k/2

(∫
M
e−
||p−y||2

4t

[
f(p)− f(y)

]
dµy

)
where µ is the uniform measure onM obtained from the volume form. The uniform distribution is an
essential assumption for this result by Belkin and Niyogi 2008 and essentially assumes that there is
no information with the density and hence can ignore the coupling of density and geometric structure.
In showing that the integral operator Lt,n converges to ∆M, the authors employs the heat operator
Ht : L2 → L2, which is the convolution with the heat kernel. Previous work has shown 1−H

t
and ∆M share an eigenbasis, and the proof for EigLt → Eig∆M goes by showing the difference
Rt = 1−H

t − Lt is relatively bounded.

The main theorem in Belkin, Niyogi, and Sindhwani 2006 paper (Theorem 2.1 ) can be summarized

by a diagram as: EigL EigL̂t,n EigLt Eig∆M
extendV→M n→∞

n→∞ tn→0

t→0

1.3 Diffusion Maps (Coifman and Lafon 2006)

To relax the uniform distribution assumption as in Belkin and Niyogi 2008, Coifman and Lafon found
a way to decouple the interaction between the density/distribution and the geometry of the dataset by
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constructing a one-parameter family of anisotropic diffusion kernels that capture different features of
the data with the parameter varying. Unlike in Belkin and Niyogi 2008, Coifman and Lafon utilized
the normalized graph Laplacian, and, more specifically, the graph Laplacian normalization is not
applied on a graph with isotropic weights, but rather on a renormalized graph. The construction is as
follows:

1. Fix α ∈ R and a rotation-invariant (isotropic) kernel kε(x, y) = h( ||x−y||
2

ε )

2. Let qε(x) =
∫
X
kε(x, y)q(y)dy where q(y) is the density of the points onM. Then form

the new kernel as k(α)(x,y)
ε = kε(x,y)

qε(x)αqε(y)α

3. Appy the weighted graph Laplacian normalization to this kernel by setting d(α)
ε (x) =∫

X
k

(α)
ε (x, y)q(y)dy and defining the anisotropic transition kernel as pε,α(x, y) =

k(α)
ε (x,y)

d
(α)
ε (x)

Then, following the framework of proving consistency of graph constructions, the integral operator is
defined asPε,αf(x) =

∫
X
pε,α(x, y)f(y)q(y)dy, which is later shown to converge spectrally to the

symmetric Schrödinger operator, ∆φ− ∆(q1−α)
q1−α φ, φ = fq1−α.

When α = 0, the influence of density is maximal, and the diffusion reduces to computing the
normalized graph Laplacian with isotropic (e.g. Gaussian) weights. Particularly, when the density q is
uniform on manifoldM, the result is consistent with Belkin and Niyogi 2006 that the graph Laplacian
approximates the LBO onM. When α = 1, the influence of the distribution of the data is eliminated
with the renormalized graph Laplacian, i.e. geometry and density are completely decoupled. If
the points approximately lie on a submanifold of Rn, then it is an approximation to the LBO, and
the heat kernel e−t∆ can be approximated by P t/εε,1 . With the anisotropic kernel graph construction
(renormalized graph), Coifman and Lafon provide a way to fully decouple the distribution and the
geometry of points on the data manifold, and therefore the convergence of graph Laplacians can be
generalized to cases where uniform distribution doesn’t apply. However, the results from Coifman
and Lafon 2006 still requires the manifold to be compact, and with the usage of weighted kernels,
the geometric features are not easily to be extracted. In finite sample case, the integrals can be
approximated by the empirical estimators:
q̄ε(xi) =

∑m
j=1 kε(xi, xj) and d̄(α)(xi)

ε =
∑m
j=1

kε(x,y)
q̄ε(x)αq̄ε(y)α ,

p̄ε,α(xi, xj) =
kε(xi,xj)

d̄
(α)
ε (xi)d̄

(α)
ε (xj)

, and P̄ε,αf(xi) =
∑m
j=1 p̄ε,α(xi, xj)f(xj).

1.4 Recent Development on Manifold Representation (Berry and Sauer 2019)

So far, we’ve seen in diffusion maps paper by Coifman and Lafon 2006 and eigenmaps paper by
Belkin and Niyogi 2008 the approach that use localised kernels to form graphs with weighted edges
and then use the weighted graphs to produce operators that converge to LBOs with respect to various
geometries on the manifold. This approach in general is an outgrowth of Kernel PCA. Different
versions of diffusion maps can reconstruct the geometry of the manifold with respect to a desired
metric, and hence implicitly include all the topological information about the manifold. However, it
is not yet clear how to explicitly establish the the topological or geometric connection between the
weighted graph and the underlying manifold.

In contrast to the weighted graph constructions, the unweighted graphs used by persistent homology
approach provide better accessibility to geometric features. In persistent homology approach, series
of unweighted graphs are generated to reconstruct topology one scale at a time and to compute
topological features at different spatial resolutions, where more persistent features are deemed more
likely to be true features of the underlying space. The great advantage of an unweighted graph is that
a simplicial complex can be built from the graph immediate by the VietoTris-Rips (VR)† construction.
Despite the explicit connection to geometry, a single unweighted graph cannot be guaranteed to
contain topological information at all level, which is doomed by its scale-dependent construction.
Consequently, there is not a unified homology in the limit with large data, and consistency results for
the persistent homology approach is not possible.
†Vietoris-Rips complex is an abstract simplicial complex that can be defined from any metric space M and

distance δ by forming a simplex for every finite set of points that has diameter at most δ, hence the connection to
unweighted graph, which is constructed with metric, is immediate.
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The recent development in Berry and Sauer 2019 proposes a unweighted graph construction that
combines the advantages of both the weighted graph approaches and the persistent homology
approach. That is, the unnormalized graph Laplacian under the proposed construction has the spectral
and pointwise convergence to a LBO on the manifold in large data limit with all the topological
information incorporated, and like the unweighted graphs, the manifold’s topological information
can be extracted.

1.4.1 CkNN Graph Construction

Continuous k-Nearest Neighbors (CkNN) construction connects the points x, y if d(x, y) <

δ
√
d(x, xk)d(y, yk) where d is the given metric on the data points, xk, yk are the k-th nearest

neighbors of x, y respectively, and δ is a continuous tuning parameter. CkNN can be understood
as kNN with varying bandwidth. The introduction of δ allows k to be fixed so that ||x, xk|| is an
estimator of q(x)−1/m where q(x) is the sampling density andm is the intrinsic dimension of the data.
CkNN can be generalized to a broader class of multi-scale graph constructions: connect the points
if d(x, y) < δ

√
ρ(x)ρ(y), where ρ defines the local scaling near the point. It is shown in this paper

that the unique multi-scale graph construction that yields a consistent limiting geometry requires
ρ(x) ∝ q(x)−1/m and hence in this sense CkNN is the unique unweighted graph construction that
has consistency.

1.4.2 Explicitly Talking about Manifold Topology from Graph Topology

Figure 1: Relation Diagram from (Berry and Sauer 2019).

Berry and Sauer 2019 provides a diagram that explicitly connect graph, graph Laplacian, Laplace-
Beltrami operator, and the underlying manifold in Figure 1. So far, there are rich results about the
bottom arrow that show consistency for various graph constructions such as in Belkin and Niyogi
2008, Coifman and Lafon 2006, and the CkNN construction in this paper. However, a question arises:
Does consistency of the Laplacian operator provide topological consistency in the sense that the
homology computed from the VR complex is isomorphic to the homology of the underlying manifold
in the large data limit?

The question can be studied first via the connections between the discrete and continuous operators
and their corresponding topology (graph and manifold). For the left vertical arrow, the graph
determines the entire VR complex, and the graph can be fully reconstructed from the unnormalized
graph Laplacian, and so Lun completely determines the VR homology of the graph. For the right
vertical arrow, it is possible to reconstruct the metric on a Riemannian manifold from the LBO, and
the metric completely determines the homology of the manifold.

With the respective connections between operators and topology, the connection is explicitly spectrally
for the zero homology, as the zero-homology of a graph corresponds exactly to the zero-eigenspace
of the graph Laplacian and analogously the zero-homology of the manifold corresponds to the
zero-eigenspace of the Laplace-Beltrami operator. For the isomorphism between higher order
homology groups, the authors conjecture the generalization is possible via the more general framework
concerning the Laplace-de Rham operators.

With the summary results above, the Berry and Sauer 2019 work makes a great advancement in the
theory about manifold representation. The understanding of the data manifold also inspired ways to
incorporate geometric information in the setting of statistical learning, and some results along this
line are shown in the next section.
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2 Applications: Incorporating geometric information into function spaces

As in (Ham et al. 2004) is that, many non-linear dimension reduction algorithms such as Isomap,
Laplacian Eigenmap and LLE can be interpreted as kernel PCA, where a local neighbourhood
structure on the data is captured by a graph, characterised by the weighted adjacency matrix/ Gram
matrix, to globally map the data manifold to a lower dimensional space. The construction of a Gram
matrix is equivalent to mapping the data to points pi, . . . , pn in a Hilbert space by a kernel function.
Such mapping may be viewed as a warping of input space, defined by the local structure of the data,
into a feature space where manifold is flat.

The following series of paper (Belkin, Niyogi, and Sindhwani 2006, Sindhwani, Niyogi, and Belkin
2005, Sindhwani, Chu, and Keerthi 2006) instead follows an approach that is more common in the
kernel learning literature, where a kernel is formulated so as to directly construct RKHS warped
by the local intrinsic geometry of the data such that the kernel is deformed along a finite subspace
spanned by {k(xi, ·)}l+ui=1

†. By doing this, it has a natural out-of-sample extension owing to the
formulation in the function space, where the graph based algorithms do not exhibit. And the flexible
framework of the semi-supervised learning allows for the relaxation to unsupervised, and constraint
to fully-supervised setting easily by amending the regularisation problem in (1).

2.1 Manifold Regularisation in RKHS (Belkin, Niyogi, and Sindhwani 2006)

Classical function learning framework (i.e.classification and regression) such as SVM, Ridge re-
gression and splines can be broadly characterised as regularisation problems with different loss
functions and complexity constraints, and such constraints can be framed as smoothness conditions in
appropriately chosen Reproducing Kernel Hilbert Space (RKHS) with the reproducing kernel k(·, ·).

Consider a generative model, it is assumed that there is a probability distribution P : X × R→ R
according to which labelled examples (x, y) are generated from; and unlabelled examples x ∈ X
are drawn from the marginal distribution PX of P . To make the marginal distribution informative
regarding the conditional distribution, it is assumed that P(y|x) varies smoothly along the geodeisic
in the intrinsic geometry of PX . Therefore, the traditional regularisation framework can be extended
to (1) by incorporating smoothness penalty of the function in the intrinsic geometry of PX :

f∗ = argminf∈Hk
1

n

n∑
i=1

V (xi, yi, f) + γA‖f‖2H + γI‖f‖2I (1)

‖ · ‖H is the norm on the ambient space (RKHS) and ‖ · ‖2I is the smoothness penalty described above.
When the manifold hypothesis holds , the data distribution is supported on some low-dimensional
manifoldM, the constructed ‖f‖2I should penalize f along the manifold.

WhenM⊂ Rn is a compact, one natural choice for ‖ · ‖2I is that

‖f‖2I =

∫
x∈M

‖∇Mf‖2dPX ,

this provides an estimate that on average how far apart f maps nearby points on the manifold. This
choice of ‖f‖2I also incorporates geometric information through the connection to Laplace-Beltrami
Operator (LBO). By Stoke’s Theorem the above can be written as

‖f‖2I =

∫
x∈M

‖∇Mf‖2 dPX =

∫
x∈M

f∆f dPX

When restricted to the graph, this can be approximated using data {xi}u+l
i=1 and graph Laplacian

L = D −W with Gaussian weight, and then (1) becomes

f∗ = argminf∈Hk
1

n

n∑
i=1

V (xi, yi, f) + γA‖f‖2H +
γI

(u+ l)2

l+u∑
i=1

(f(xi)− f(xj))
2Wij︸ ︷︷ ︸

fTLf

(2)

†l is the number of labelled data and u is the number of unlabelled data, coherent to the notation in the later
sections.
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Solving the above regularisation problem is equivalent to finding a function f∗ ∈ H̃, where H̃ is a
new RKHS constructed by deforming the original RKHS to reflect the underlying geometry of the
data. This is achieved by reconstructing a Mercer kernel k̃(·, ·) such that it is adpated to the geometry
of PX . The following section illustrates the formulation of such kernel, and therefore by the proof in
(Belkin, Niyogi, and Sindhwani 2006), the solution f∗ exists and can be written with respect to the
data as

f∗(x) =

l∑
i=1

αik(xi, x) +

l+u∑
j=1

βj(x)k(xj , x) (3)

for some data dependent function βj(x) ∈ H. Moreover, the Representer Theorem is shown to hold
with k̃(·, ·). Therefore the solution can also be found via f∗(x) =

∑l+u
i=1 αik̃(xi, x)

2.2 Kernel on Data Manifold (Sindhwani, Niyogi, and Belkin 2005)

Given the regularisation problem in (2) the corresponding form of the inner product defined on the
new RKHS is formulated as follows

〈f, g〉H̃ = 〈f, g〉H + 〈Sf, Sg〉V
where V = Rn is chosen along with a positive semi-definite inner product, termed as ‘point cloud
norm’ by the author, such that the induced norm for a evaluation map S : H → Rn, f = S(f) =
(f(x1), · · · , f(xn)) is defined as:

‖Sf‖V2 = f tM f .

where M is a symmetric positive semi-definite matrix. M can be taken as the graph Laplacian L to
be consistent with the formulation in (2); alternatively, for appropriate ‖ · ‖I , M = Lp, p ∈ Z+ can
also be chosen.

To show that H̃ is a well-defined RKHS, the authors first obtain that span{k̃(xi, ·)}l+ui=1 =

span{k(xi, ·)}l+ui=1 . Thus the new kernel function k̃ corresponding to H̃ can be presented as

k̃(x, ·) = k(x, ·) +

l+u∑
j=1

βj(x)k(xj , ·) (4)

To find the coefficients βj(x), it solves a system of linear equations generated by evaluating k(xi, ·)
at x in the new RKHS, i.e. k(xi, x) = 〈k(xi, ·), k̃(x, ·)〉H̃ and an explicit form of the new kernel can
then be written into a closed form evaluated only at the data,

k̃(x, y) = k(x, y)− ktx(I +MK)−1Mky (5)

where kx = (k(x1, x) . . . k(xn, x))t, Kij = k(xi, xj).

Notably, the author pointed out several drawbacks of the such regularisation scheme, where the
regularisation parameter γA, γI for the two penalty terms can be difficult to tune and the ‘big-N’
problem exists due to the inversion of dense Gram matrix in the inference.

3 Conclusion

In conclusion, we’ve explored some classical and recent developments on the graph Laplacian. We’ve
seen the graph Laplacians under different graph constructions (with weighted or unweighted edges)
converges as operators to the Laplace-Beltrami operator, which encodes the geometric information of
the local structure of the underlying manifold. Such geometric information has been widely used for
dimension reduction and clustering, and in this report we also present the applications that incorporate
the geometric information into function space. Geometry describes the relations of points, lines,
surfaces, solids, and higher dimensional analogs, while function is the general notion of association
between objects, so it is not surprising the two can be unified in some ways. Essentially, all the works
presented in this report concern with constructing functions or functionals that can characterize some
features of the data while enjoying nice analytical properties. Such connection is inspiring.
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