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Abstract

We present a discussion of [1]] by Fuglstad et al., complete the proof for Thm 2.1
and replicate several results from the paper. In Section 1, we give an overview of
the problem addressed in the paper. We make explicit the contributions of the paper
and provide a summary of theoretical and simulation results in Section 2, 3 and 4.

1 Problem Overview
1.1 Model Based Geostatistics with Gaussian Random Fields (GRF)

Gaussian random fields (GRFs) introduce spatial second order dependence into hierarchical models
(Eq. [1) that are applied extensively in spatial statistics. It is a “simple yet powerful tool", according to
the authors, whose construction only involves the specification of a correlation function. Stationary
GRFs are controlled only by two parameters, the (local) range p and marginal variance o2, but their
estimation and inference remains a computational challenge.
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Frequentist methods to estimate these parameters include (profile) maximum likelihood and restricted
maximum likelihood. However, maximizing likelihoods for spatial models often requires gradient-
based numerical optimization. This can be highly sensitive to parameter initialization, especially
when the likelihood function is multimodal or flat, as often the case for hierarchical models.

1.2 Bayesian Inference and Prior Selection

Bayesian inference provides an alternative approach, by estimating the posterior distribution of the
parameters, provided with some choice of priors. In most cases, posteriors are sampled using Markov
Chain Monte Carlo (MCMC) or approximated using deterministic methods, such as integrated nested
Laplace approximation (INLA). The summary statistics of the posterior are able to provide a rich
quantification of parameter uncertainty.

However, selecting a sensible prior is non-trivial. A well-chosen prior stabilizes the inference and
improves the predictive power; however, in the words of Fuglstad et al., “a poorly chosen prior may
lead to catastrophe.” When detailed prior knowledge on parameters is available, one may construct a
subjective prior such that it represents this existing information and therefore informs the penalization
of the model fit. However, as models grow more complex and expert knowledge may be unavailable,
the difficulty in specifying subjective priors on the parameters increases.

One alternative is to use a non-subjective prior, such as Jeffreys’ prior. The posterior estimation is
then based on the information from the data only, via the likelihood, and does not incorporate any



additional a priori information. Such an approach may be suboptimal, especially in the case of GRFs
with Matérn covariance function ¢ : [0,00) — R as in Eq.
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Here, 02 > 0 denotes the marginal variance, p > 0 the range and v the smoothness. K, denotes

the modified Bessel function of the second kind with order v and r = |s — ¢| for spatial locations

s,t €D C R?, D a bounded spatial domain, dimension d < 3.

In this case, the value of o2 and p are coupled, leading to a ridge in the likelihood function (Warnes and
Ripley, 1987). This means that the likelihood is the same for different pairs of o2 and p that may vary
dramatically. Consequently, for a bounded domain, there do not exist consistent maximum likelihood
estimators for both parameters even with asymptotically infinite sample size. An uninformative prior
will allow the likelihood to dominate the estimation, often leading to unstable estimates. In other
words, the prior affects the behavior of the posterior of the parameters, even under in-fill asymptotics.
It is essential to select the prior carefully.

1.3 Penalized Complexity Prior

Simpson et al. [2] introduced a principled way of constructing weakly informative priors for
parameters in additive hierarchical models. In Simpson’s framework, a base (simplest possible) model
is identified for a given parameter, and a Penalized Complexity (PC) prior is set as a more informative
prior (called the flexible model). Constructing such a prior often requires expert knowledge. However,
a general algorithmic approach can optimize the level of information between the flexible and base
model by using four key principles. These are:

1. Occam’s Razor: a simple model is preferred;

2. Measure of Complexity: Kullback-Leibler Divergence (KLD) is used to measure the in-
creased complexity from the base model;

3. Constant Rate Penalization: assume a constant decay rate of the PC prior as a distance
based on the KLD increases and

4. User Defined Scaling: user defines values setting the tail probability of the prior, which can
be used to select hyperparameters for the PC prior.
2 Constructing Priors for GRFs with Matérn Covariance

Based on the reparameterization of the Matérn covariance function in Eq. [3]below, Fuglstad et al.
derive a PC prior for 7|x and k with fixed smoothness parameter v in a GRF of dimension d < 3.
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This gives an extension to the PC prior framework from [2], who only considered the case for additive
hierarchical models as in Eq. [I] This is important as the Matérn covariance function is quite general
(many common covariance functions are special cases of it), and is ubiquitous in spatial hierarchical
modelling.

2.1 Construction Steps

To derive the PC prior, the first step is to derive KL distance d from the base model to the flexible
model. (We note that d was used before to denote the dimension of the GRF; this notational issue is
kept, to maintain comparison with Fuglstad, et al.) Denoting the Gaussian measures for base model
and flexible model as Py and P over the set X" respectively, where P is absolutely continuous w.r.t.
Py, then the KL distance is defined by d(P || Py) = /2K LD(P || Py), where

dpP

KLD(P | Py) = log —dP.
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where % is the Radon-Nikodyn derivative of P w.r.t. Py. Notably, this construction of d corresponds
to the change in complexity from the flexible model to the base model.

Next, the authors define the prior on d using the other three principles, in particular the constant
decay rate

W—T, d,6>0

for a constant r € (0, 1). They note that the exponential distribution is the only continuous distribution
with this property if 7 = exp(—A\) is chosen; therefore, 7(d) = Aexp(—Ad) for d > 0. Such a
construction naturally connects the distance from flexible to base model with how the change in the
flexible model’s distribution. And the hyperparameter ) is chosen by user-defined upper or lower tail
probability, i.e. P(Q(d) > U) = aor P(Q(d) < L) = a. Here, Q(d) = o or p is found by change
of variables to the original parameterization of the Matérn covariance function. This enables the user
to specify prior belief on the geometry of the parameter space, by selecting the tail values (U, L) of
the tail probabilities in the prior distribution.

2.2 PC prior for 7|x and k

In deriving PC priors for Matérn covariance parameters, Fuglstad et al. start by considering 7|,
taking the base model as 7 = 0 conditioned on . Then,

m(7|k) = Aexp(=Ar), T>0,
where A > 0 is a hyperparameter satisfying P(c > o¢|k) = a. We obtain that
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The derivation to 7(7|k) is provided in the answer to Q1 in Section ??.

The PC prior constructed for « is based on the infinite-dimensional GRF instead of a finite-dimensional
GRE, when 7 is set fixed. When the base model takes x = 0, which corresponds to p = oo,

(k) = gAmd/Q_l exp(=A&¥?), k> 0.

The hyperparameter A > 0 is again chosen by specifying P(p < po) = «. Then,
Po 42
A=—| —= log(a).
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Lastly, the authors provide the joint PC prior for (7, k) and consequently (o, p), by again transforming
the parameters, taking a base model with infinite range and zero marginal variance,

d- - - ~
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where P(p < pg) = a1 and P(0 > o) = ay are achieved by
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2.3 Complete proof for Theorem 2.1 [1]

We present the proof for Theorem 2.1 in Fuglstad et al. (2019) with the four principles specified for
PC prior in [2].

Theorem 1 (Theorem 2.1 [1l]). Let u be a GRF defined on D C R® with a Matérn covariance
Sfunction with parameters (T, k,v). If the GRF is observed on s1, 2, - , s, € D, then conditionally
on K, the PC prior for T with base model T = 0 is

7w(7|k) = Aexp{—=A7}, 7 >0,

with hyperparameter A > 0.



Proof. Letu|r,k ~ N (0,%) with ¥ € R", where u = (u(s1),--- ,u(s,)). & = 72R(k, V) is
the Matérn covariance matrix parameterised as before, where R is a fixed correlation matrix with
fixed x and v. Then the KLD from the flexible model /(™) (0, X2) to the base model N.™ (0, %) is

KLDWN®™ || N§™) = % {tr(zolz) cnoh <I|Ezol) } '

And the base model >; = 0 when Tg = 0. For simplicity, assume that R has full rank, then the KLD
becomes
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for 7¢ < 72. Therefore the KLD between the two distribution is d(7) = \/ 2KLDN™ || N{™) =
\/n12/13 = \/n/737. And the prior defined for the distance d() is the exponential

7(d) = 0 exp{—0d},

which is derived from the assumption of constant decay rate r = exp{—0} of the flexible model from
the base model (Principle 3). In other words, the prior for distance d satisfies
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By transformation of random variables from distance d to marginal variance 72, we get that
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where 7 > 0, and A\ = 6/n/78. And the hyperparameter 6 can be defined by user via specifying the
tail value 7¢ defining the tail probability of the PC prior. O

2.4 Discussion on PC prior for

Due to the computational burden on deriving the PC prior for s based on the finite-dimensional
distributions corresponding to the observation locations, Fuglstad et al. instead propose to derive the
prior based on the infinite dimensional GRF. They claim that “this is possible because the changes
in x result in finite values for the KLD for the infinite-dimensional GRF when 7 is fixed." We will
elucidate this sentence below.

We start with the following theorem from [3], referenced in [1l], which gives the sufficient conditions
for equivalence of two Gaussian measures with Matérn covariances on a bounded domain.

Theorem 2 (Theorem 2 [3]). Let P;, i=1,2 be two probability measures such that under P;, the
process u(s), s € Re where d = 1,2, 3, is stationary Gaussian with mean 0 and an isotropic Matérn
covariance in R® with variance o? and scale parameter k;, i = 1,2 and the same smoothness
parameter v. For any bounded infinite set D C RY, P| = P, on the path u(s), s € D if and only if
02K = 03K e T = To.

The upshot of Theorem [2]is that it provides a direct link between the Gaussian measure of a GRF
and parameters of Matérn covariance function. Therefore, if 71 = 7 with changing « (that is, 7 is
fixed), the two Gaussian measures are equivalent and the KLD between the corresponding GRFs is
finite. Therefore, the PC prior for « is well-defined. On the other hand, if 7, # 7o, i.e. when 7 is
changing, the two Gaussian measures are orthogonal on the path u(s). This is to say that the absolute
difference of the covariance for the process u(s) at any indices s, ¢t € D for the Gaussian measures
Py(02, k1,v) and Py(0?, ko, ) is not bounded, i.e.

[Ep, (u(s)u(t)) — Ep, (u(s)u(t))]| = oo.

Consequently, the construction of the PC prior with infinite-dimensional GRF is possible for « only
if 7 is fixed. This is because the theorem above guarantees a finite KLLD, meaning this can be used as
the measure of complexity (Principle 2).

Finally, note that 7 can be consistently estimated as the number of observations increases; however, x
cannot be. We can show this with a proof sketch by contradiction. Note that if both are consistently



Name Description Expression

PriorPC | PC Prior, where p, o > 0 and with hyperparame- | 7(p, o) = A dap Zexp(Aip T — Aa0)

ters po, Qp, 00, Qg

PriorJe | Jeffreys’ Rule Prior, where p,o > 0 and with | 7(p,0) = o~ (tr(U?) — Ltr(U)?)'/?

no hyperparameters. U = (%E)Eil, with ¥ the
correlation matrix of the observations (Berger et al
(2001)

PriorUnl | Uniform Prior 1: p follows a Uniform prior on 7(p,0) x ot

bounded interval [A4, B] and o > 0 follows Jef-
freys’ prior

PriorUn2 | Uniform Prior 2: log(p) follows a Uniform prior 7(p,o0) xo Ip T

on bounded interval [A, B] and ¢ > 0 follows
Jeffreys’ prior

Table 1: Priors investigated in simulation study (modified version of the authors’ Table S1).

estimable, then o is consistently estimable. By Theorem 2] if we take 8 = (02, x,v) and 6’ =
(2202 k/2,v), then 03K3" = o5k3Y, and the two corresponding measures are equivalent: Py = Py .
If there exists a weakly consistent estimator o7 that converges in probability Py to o2, then it
also converges to 2202, This means that o cannot be consistently estimated, contradicting the
consistency assumption made above. Since a consistent estimator for o does not exist, neither does

one for x.

3 Comparison to Other Priors via Simulation

The PC prior framework described above is implemented on simulated data and compared to several
alternative priors. Spatial data is simulated as follows:

1. Select 25 locations, 1, ..., So5 at random from the unit square: [0,17?

2. Generate realizations u = {u(s1), ..., u(s25)} from two GRFs with exponential covariance

c(r) = exp( _RQO” ), where the true range Ry is set to 0.1 or 1, respectively. For both cases, the

2

true o~ is set to 1. The authors choose only to vary the true range value in this simulation;
interesingly, in the application (see Section ), both range and variance parameters are
varied.

3. Fit the simulated data using a GRF with exponential covariance ¢(r) = exp( ’pgr ), where

the range and marginal variance are estimated from the data. Use one of four priors in this
estimation, described in Table [T}

The hyperparameter selection for the PC prior requires setting probability bounds on the two parame-
ters. That is, we select hyperparameters such that P(p < pg) = a, and P(c? > 02) = a,,, choosing
several values of py and oy.

The targets of investigation in this simulation study are the coverage and lengths of the credible
intervals produced by the different priors. The coverage of a credible interval is the proportion of
credible intervals produced by posterior sampling that cover the true parameter value. If the posterior
sampling has good frequentist properties, it should be close to the nominal value (so 0.95 for a 95%
credible interval).

In this study, two kinds of credible intervals are computed:
* the standard quantile-based equal-tailed intervals,

* highest posterior density (HPD) intervals, the shortest possible intervals that contain the
desired « level of the posterior distribution.

The equal-tailed intervals are preferred, and will be discussed throughout the results, because they
have closer coverage probabilities to the nominal values for the PC and Jeffreys’ prior, and are less
sensitive to hyperparameter values for the PC prior. The authors justify using the equal-tailed intervals
in light of the high skewness of the posteriors (which would motivate the HPD intervals), because
both interval types yield similar results when comparing alternative priors.



The joint posterior of range and standard deviation is examined under the PC and Jeffreys’ priors. For
the PC prior, the hyperparameter is selected by setting P(p < 0.1) = 0.05 and P(c > 10) = 0.05.
As we demonstrate in Figure[I] the sampler will explore more of the extremes of the posterior under
the Jeffreys’ prior, than under the PC prior. This indicates that the PC prior “can be used to achieve
credible intervals that are more reasonable”, in light of, e.g., the spatial scale of the problem, or
previous analysis of a subset or different set of data (this would be an empirical Bayes approach).

Next, authors examine the performance of estimation under the PC prior. The authors’ Table S2
shows that coverage is good even when the o is allowed to be far greater than the true standard
deviation (up to 40x greater) or pg is set to be much less than the true range (down to 1/10 of the
true range). But a o that is too low (i.e., 0.625 times the true value), as well as a p that is too high
(i.e., 40 times the true value) results in credible intervals with too low coverage. Results are similar
between the two true ranges (Ry = 0.1 or 1), with the only difference being that for Ry = 1, a pg
that was 40x the true value still led to good coverage.

The authors then compare coverage and the length of the credible intervals across the 4 alternative
priors. The PC prior has much shorter credible intervals than the Jeffreys’ prior, though they both
have reasonable coverages across the true ranges and for the two parameters. For PriorUnl, both these
performance metrics vary based on the upper limit set (meaning that a poorly set upper limit leads to
poor coverage and excessively wide intervals). For PriorUn2, only the interval lengths depend on the
upper limit set and the coverage is close to nominal throughout. In summary, since both coverage
probability and short credible intervals are of import, the PC prior outperforms the three alternatives
across a range of hyperparameter values and for all experiments performed.

3.1 Answer to Q3

We reproduce the results in Fuglstad et al’s Figure 2 and its discussion in the text (see our Figure
[I). The plot compares draws from the joint posterior distribution for p and o, under two different
priors. We first simulate observations from a GRF as described in Section 3, using true p = 1 and true
o = 1. We then use PriorJe (black circles in Figure[T)) and PriorPC (red circles) to estimate the joint
posterior of the parameters. For PriorPC, we use a hyperparameter such that P(p < 0.1) = 0.05 and
P(o > 10) =0.05.

The authors claim to take 1,000,000 draws from the joint posterior distribution, which leads to very
extreme posterior values under PriorJe but not under PriorPC. In fact, the largest values under PriorJe
are several orders of magnitude higher than those under PriorPC. However, running the MCMC
sampler to draw from this complicated joint posterior (under either prior specification) requires
several numerical steps (for example, in taking a Cholesky decomposition of the covariance matrix).
This meant that producing many posterior draws resulted in numerical errors in R, as the matrix
system was treated as singular. It took hundreds of attempts before a run of 10,000 draws from the
posterior could be accomplished without a numerical error. We experimented with a larger posterior
sample but this failed to run, even with thousands of attempts.

Even with a smaller number of draws, we get the same pattern when comparing PriorJe and PriorPC,
and can conclude, as the authors do, that PriorPC yields posterior estimates that are more reasonable.
For example, a posterior range of 100 or more (produced by PriorJe but not PriorPC) is quite
unbelievable when the true range is 1. This indicates that even weakly informative priors yield better
(more stable) results than non-informative priors like the Jeffreys’ rule. This effect will be even
stronger when the likelihood has more features (e.g., flatness, multimodality) that make it difficult to
work with numerically.

4 Application to Nonstationary Precipitation Data

The PC prior framework established in Section 2 can also be used to fit nonstationary models to
data. This is useful when predicting a process whose second-order structure varies over time, its
spatial domain or both (e.g., many environmental processes under climate change). An example is
implemented by the authors on total precipitation levels for a one-year period, across 233 measurement
stations in southern Norway. The guiding question is whether a nonstationary model, which can
more flexibly explain detailed structure in the data, provides better precipitation predictions than a
stationary model. Guided by previous research [4], the authors specify a linear geostatistical model
with intercept and elevation fixed effect, a spatial random effect and an iid normally distributed nugget
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Figure 1: Replication of Figure 2 from [[L].

effect, that is
yi = Bo + x1b1 +u(s;) + &,

where y; are precipitation values, x; are elevation values at station i, u(s;) is a GRF parametrized
by local range p and marginal variance o and the nugget ¢; ~ N (0, 02). This model assumes that
the precipitation process is second-order stationary, with a constant mean and a covariance structure
specified entirely by two parameters: p and 0. This stationary model describes the first-order
structure of the precipitation process.

PC priors are constructed on the parameters; hyperparameters for the PC priors are set such that p
should not have high probability to be under 10 km and o2 (both for the spatial field and nugget
precision) should not exceed 3 km. These are justified “based on the spatial scale [the authors] are
working on.”

Building a nonstationary model requires specifying a first-order structure, which is borrowed from
the stationary model, and the second-order structure, or how the local range and marginal variance
vary over space. These are specified by functions R(-) and S(+), respectively. For both parameters,
the authors use a linear function of elevation and the magnitude of gradient of the elevation (without
explaining why, outside of an apparent visible similarity between the latter covariate and the pattern
of precipitation). Functions R(-) and S(-) are written as a sum of a set of basis functions scaled by
some coefficients, which are grouped into vectors 61 and 02, respectively. Using a g-prior approach
[5]], these are modelled by a Normal distribution with precision controlled by precision parameters
(m1 and 79, respectively) multiplied by a Gramian matrix of the basis function set. Each of these two
parameters now gets an exponential PC prior placed on it, and this flexible model is shrunk towards
a base model of zero variance (no second-order structure). In general, the hyperparameter for the
exponential distribution can be selected by expert knowledge or, as the authors do, by shrinking down
to the base model.

The base model of zero variance is exactly the stationary model. So, the hyperparameters can be
set such that they yield good inferences when fitting data from a stationary process. To do this, the
authors fit a stationary model to the dataset and then many processes are simulated from the dataset
and fit by the non-stationary model under different hyperparameters. Credible intervals for each
parameter under these different nonstationary models are compared with the parameter estimate from
the stationary model. The hyperparameter is set to be the one that provides coverage close to the
nominal coverage to the stationary estimates. In the Norwegian precipitation example, the resulting
best-covering hyperparameters are \; = Ao = 20.



This nonstationary model is fitted to the precipiation data using Markov Chain Monte Carlo simula-
tions from the posterior. It is compared to the stationary model on two standard scores of predictive
performance: the log score and the Continuous Ranked Probability Score (CRPS). In both, a leave-
one-out cross validation scheme is used to see how well the model built on the remaining stations
predicts the one left out. The log-score is higher (better) for the nonstationary model and the CRPS
is lower (better) as well. It is also found that CRPS improves when the second-order structure is
modelled only by R(-) in the non-stationary model. That is, not including the marginal variance in the
second-order structure leads to better predictions than a model that has both. This is left undiscussed
in the article, but may be due to the greater importance of local range in describing the spatial pattern
of precipitation values, which drop quickly when moving away from the coastline.
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